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Nickel sulphide inclusions in glass: an example 
of microcracking induced by a volumetric 
expanding phase change 

M. V. S W A I N  
Saint Gobain Recherche, Aubervilliers, France 

Microcracking about inclusions of nickel sulphide in soda-lime glass has been studied. 
These cracks are nucleated by the volumetric expansion that accompanies the e- f l  phase 
transformation in nickel su Iphide. The e-phase is metastable and, upon transformation to 
the fl-phase, is accompanied by a volumetric expansion of about 4%. A simple generalized 
fracture mechanical analysis of the cracking about such inclusions is developed. Firstly, 
crack initiation about an inclusion is considered; this is then extended to consider inclu- 
sions within a thermally tempered plate. The critical dimensions of the inclusion to initi- 
ate microcracking in an annealed specimen and to cause spontaneous fracture of a 
tempered plate are predicted. Observations of nickel sulphide inclusions in annealed and 
tempered specimens support the predictions. The implications of this work with regard to 
the addition of fine dispersions of zirconia to ceramics are pointed out. 

1. Introduction 
The presence of nickel sulphide (NiS)inclusions in 
soda-lime glass becomes a serious problem when 
the glass is thermally tempered. These inclusions, 
which are generally spherical or slightly elliptical 
although occasionally cigar shaped inclusions are 
found, undergo a volume expanding phase change 
upon cooling. This volumetric expansion is suf- 
ficient to nucleate microcracks which, in tempered 
glass, propagate in the internal tensile stress field, 
resulting in the destruction of the body. This 
phenomenon was first appreciated by Ballantyne 
[1] who correctly identified the inclusions and 
found that the position of the inclusion within 
the plate was important. More recently Hsioa [2] 
has presented further fractographic evidence to 
support the conclusions of Ballantyne. 

The complete Ni-S phase diagram is very com- 
plex, see Wagner [3] for a recent review, but it has 
been found [4] that NiS inclusions with the ap- 
proximate composition 65 wt% Ni-34 wt% S, 
commonly called millerite, are primarily respon- 
sible for the spontaneous fracture of tempered 

glass. Millerite undergoes a phase transformation 

from the high temperature, hexagonal a-phase to 
the low temperature, rhombohedral r-phase at a 
temperature of 380 ~ C. The precise temperature 
of the phase change is strongly dependent upon 
stoichiometry. It has been found that in quickly- 
cooled glass only the a-phase is present in the in- 
clusion. However, upon subsequent heating the 
inclusion may transform to the r-phase, the time 
taken for the transformation being a sensitive 
function of temperature. 

The aim of the present study has been to ob- 
serve microcracks about phase transformed inclu- 
sions in glass and to compare these observations 
with a simple fracture mechanical analysis of the 
problem. Previous studies of the energetics of 
cracking about inclusions with thermal expansion 
coefficients different from the matrix have been 
made by Davidge and Green [5], and Lange [6]. 
Evans [7] has also carried out a fracture mechani- 
cal analysis of this problem incorporating the in- 
fluence of an applied tensile stress. The present 
treatment differs slightly from that of Evans by 
drawing a strong analogy with current develop- 
ments in indentation fracture mechanics [8, 9]. 
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T A B L E I Mechanical and thermal properties of NiS 
and glass 

Property Glass NiS 

Young's 
modulus, E %0 X 101~ 8.0 X 10 a~ 7.0 X 10 t~ 
(N m -=) 
Poisson's 0.23 0.27 0.20 ratio, v 

Density, p 2.51 X 10 ~ 5.46 X 10 3 5.25 X 103 
(Kg m -3 ) 
Thermal 
expansion 88 X 10 -7 163 X 10 -7 145 X 10 -7 

coefficient, c~ (o C-a) 

The latter approach enables a simple extension of 
the analysis to include the presence of tensile 
tempering stresses. 

2. Theoretical considerations 
The volumetric expansion, AV/V, of a particle 
which undergoes an isotropic phase transformation 
is given by 

AV p~ 
- - -  - l, (1) 

V p# 

where pe and p~ are the densities of the a- and 
/3-phases, respectively. Using the values listed in 
Table I, this corresponds to a volumetric expansion 
of 4%, which is in good agreement with the ex- 
pansion proposed by Hsiao [2]. 

The stresses developed about a spherical iso- 
tropic inclusion in a material, with the co-ordinate 
system of Fig. 1, are given by 

3 / n \  
or = --2Or = --Po [~_--7. ) ;r>~R, (2) 

\ r /  

r 

Figure 1 The co-ordinate system and mechanical stresses 
about an inclusion. 

where Or is the radial stress, at the circumferential 
o r  "hoop" stress and r is the distance from the 
centre of  the inclusion, and within the inclusion 

ar = at = - -P0;0~<r~<R,  (3) 

where P0 is the hydrostatic pressure and R is the 
radius of the inclusion. 

The resulting radial strain AR/R may be shown 
to be given by [10] 

AR = Po {i + 'v ,  1--2V2 t AV 
R k2E1 + E2 ] = 3--V' (4) 

where vl and Ex and us and E~ are the Poisson's 
ratio and Young's modulus of the host material 
and the inclusion, respectively. 

The resulting hydrostatic pressure on substi- 
tution for A V/V is 

( '~ 2E1 1--2<,]E, eo  : - + / .  ( s )  

The hydrostatic pressure resulting from the a-/~ 
phase transformation of NiS in soda-lime glass, 
using the values listed in Table I*, is 834MPa. In 
addition, there will be stresses resulting from dif- 
ferences in thermal expansion coefficient and mis- 
match of elastic constants. As the difference in 
the latter is small, see Table I, this factor will be 
neglected. The stresses resulting from the differen- 
ces in thermal expansion coefficients are given 
by [11] 

3 

(ae~ass--_____ ~N__~)(r . -- T) (R  I = 
ar = 2at : {1 + v ,  1------2~ \ ' /  

\ SgS + E~ ) 
3 

where Tg and T are the softening temperature of  
glass (~ 550 ~ C) and the temperature under con- 
sideration and ae .~  and aNtS are the thermal 
expansion coefficients of the glass and nickel 
sulphide. The resulting value of POT, using a mean 
value of ac~ and o~ for ~NiS, is -- 219 MPa. Thus, 
the resulting hydrostatic pressure within the phase 
transformed sphere is 615 MPa. 

An exact expression for the stress intensity fac- 
tor is somewhat difficult to determine. This is 
because, initially, the crack nucleates at a localized 
position and grows before encircling the inclusion 

*In all cases the value ofE 2 has been taken as the mean of Ec~ and E/3. 
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and further extending. Evans [7] has offered a 
solution to this problem but has stressed its limited 
application. In this work, an alternative approach is 
developed which has its origins in the analysis of 
cracks about indentations. In both cases cracks are 
developing in spatially varying stress fields. Con- 
sidering the initiation phase, an approach adopted 
by Lawn and Evans [8] for the initiation of cracks 
beneath a pointed indenter is followed. These 
authors used a model involving a simple linear 
approximation to the stress field which was 
applied only until a certain distance, b, from the 
initiation site; thereafter the stress was set as zero: 

ot = Om ( 1 - - x / b ) ; x < ~ b  (7) 

at = 0 ; x > / b ,  (8) 

where b is a constant, which in the present case is 
related to the inclusion size, and Om = Po/2. The 
stress intensity factor for an axial symmetric 
crack with the co-ordinate system given in Fig. 2 is 
then [12] 

2 lo ~" xo t ( x )  dx 
K - (rrc),,= " (c 2 - x  2 ) , ,2"  (9 )  

Substitution from Equations 7 and 8 for or(x) 
into Equation 9, and integrating, gives 

1/2 

K = 2 o m ( c )  ( t - -Trc/gb);c<~b (10)  

1/2 [ 

= 2ore (cll rr] 1 --�89 (1--b2/c2) 1/2 
x / 

sin I(4 ~ , ;c>~b.  (11) 

Substituting for Om and putting b =~R in 
Equations 10 and 11 gives, in normalized form 

�9 1/2 

- --~--~ , ~< r?R ( 1 2 )  

Po 

K /~2 11/2 

Po 

�89 ~ s ln  ;c>~r~R. (13) 

On plotting the normalized stress intensity factor 
as a function of  normalized crack length, see Fig. 3, 

at 

~ O C qR 

Figure 2 The co-ordinate system used to calculate the 
stress intensity factor for initial crack extension about an 
inclusion. Also included is a schematic diagram of the 
stress and linear approximation of the stress. 

it can be seen that the curve is a sensitive function 
of~7. 

Once the crack has been initiated it generally 
encircles the inclusion and the above expression is 
no longer valid. Instead, again using an indentation 
fracture mechanical analogy, the crack is con- 
sidered to be driven by an equivalent point force. 

Following Lawn and Fuller [9], the resolved 
force resulting from the hydrostatic pressure of 
the particle in the direction normal to the crack 
plane and at the middle of the inclusion is con- 
sidered. The resulting stress intensity factor is [ 12] 

Pe 2Po 7r R 2 
K - 0rc,)3/2 - 3 (rrc') 3/2' (14) 

where Pe is the equivalent point load, c' is the 
crack length with the origin at the centre of the 
inclusion and -~Po is the averaged normal pressure 

0.4 

I~ q : l  

0-2 

I 
0 1 c~ R 2 3 
1 2 ct/R 3 4 

Figure3 A plot of normalized stress intensity factor 
against normalized crack length for three values of ~1. 
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over the diameter of the inclusion. Again, norma- 

lizing gives K 2 
- ( 1 5 )  

This functional dependence is strictly valid only 
when c' >> R. 

In utilizing the last expression, it has been im- 
plicitly assumed that uncoupling of the inclusion- 
glass interface occurs. Otherwise, the opening of 
the crack adjacent to the inclusion would be limi- 
ted due to the radial stresses about the inclusion. 
Some justification for this assumption comes from 
the observations that, generally, the inclusion is 
only in one of the two fragments of glass after 
spontaneous fracture of the tempered glass. 

When the glass is thermally tempered, a para- 
bolic stress distribution results within the plate, 
the maximum tensile stress in the middle being 
half the surface conapressive stress. The stress in- 
tensity factor for a crack at the centre of the plate, 
of radius c', is 

!/2 
i~,\ 

K = 2% [~-)  , (16~ 

where Oo is the maximum tensile stress. The influ- 
ence of the position of the inclusion may be 
readily included in the analysis, if it is assumed 
that the stress in the vicinity of the particle and 
crack is constant and is given by 

or = Oo (1 --3y2/d2), (17) 

where y is the distance from the centre of the 
plate, and 2d is the plate thickness. Combining 
Equations 16 and 17 and normalizing gives 

. . . . .  1 (18) 
(R) 1/2 Po d2 ]" 

P0 

A plot of this expression for various values of 
oo/Po is shown in Fig. 4, for y = 0. Also shown 
in Fig.:4 is Equation 15 and the summation of 
these two expressions for different values of 
oo/Po. The loci of the minima of the normalized 
stress intensity factor, for different values of 
oo/Po, may readily be found by differentiating the 
sum of Equations 15 and 18, and is plotted in 
Fig. 5. The critical radius of an inclusion with 
internal pressure P0 in a tensile stress of Oo for 
spontaneous fracture is then 

1.o- .~ 

: ..--" /  =o.oo5 
/ / . - /  / / i 

o01L" " , "  , , , , , , 1 \ ,  , , , , , , , I  
1 10 100 

Figure 4 A plot of normalized stress intensity factor 
against normalized crack length according to Equations 
15 and 18. The co-ordinate system is that given in Fig. I. 

 K?c 
R = 7.1P~(oo/Po)3/2 �9 (19) 

This expression should also be applicable to 
annealed plates or bottles containing inclusions 
under tension [13]. 

3. Experimental results 
A number of well-annealed soda-lime glass plates 
containing a small percentage of nickel (< 0.6 wt%) 

A 

o,1 q:: 

1 0 -  

I ! I I I l i l l  I I I 

00' 
O.O/po 0-1 

Figure 5 The loci of the minima of the normalized stress 
intensity factor as a function of normalized tempering 
stress. 
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Figure 6 A phase transformed inclusion viewed in trans- 
mitted polarized light. 

were carefully examined for NiS inclusions. The 
particles which had undergone a phase transfor- 
mation were readily detected using transmitted 
polarized light. A typical observation o f  such an 
inclusion is shown in Fig. 6. The dimensions o f  the 
inclusion and any associated cracks were measured. 
The results of  some 50 observations are shown in 
Fig. 7. 

Cracks were not observed around particles of  
less than 60~m in diameter. The length of  the 
cracks was found to increase with inclusion size. 
Sometimes no cracks were observed around the 
inclusion, despite the presence of  a significant 
strain field. In other cases the strain field about 
the particle was relatively weak and again no 
cracks were observed. On closer examination of  
the strain field around an inclusion there were a 
number of  inhomogeneities with localized higher 
strains as shown in Fig. 8, These inhomogeneities 

Figure 8 Observation of the inhomogeneities about a 
phase transformed particle viewed in transmitted polar- 
ized light. 

presumably provided the nucleation sites for crack 
formation. 

In addition, two attempts were made to temper 
small samples of  the glass containing the NiS in- 
clusions. In one case, the glass spontaneously rup- 
tured shortly after it was removed from the fur- 
nace. In the other sample, which had been less 
strongly tempered, there was evidence of  crack ex. 
tension around an inclusion. In the latter sample, 
it was found that many particles which had 
previously shown high strain fields and associated 
cracks now showed no such effect. This most 
probably occurred because of  the reversibility of  
the a-/3 phase transformation. Closer inspection 
of  the sample that spontaneously fractured re- 
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diameter"  ( /u rn )  

Figure 7Crack lengths about phase transformed par- 
ticles of varying diameters. 

Figure 9 A NiS inclusion at the origin of a spontaneously 
fractured tempered plate; inclusion diameter 186um. 
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Figure 10 NiS inclusion and surrounding fracture mirror; 
plate width 11 mm. 

01 1 10 ~/,~ 

Figure 11 A re-plot of the observations in Fig. 8 in 
normalized parameters with Kle = 0.75MNm -3/2 and 
Po = 615 MPa. Also plotted are (a) Equations 12 and 13, 
with 77 = 1,0, and (b) Equation 15. Note the log-log 
scale for both co-ordinates. 

vealed a NiS inclusion situated near the centre of  
the plate to be responsible fo the fracture, see 
Fig. 91 Surrounding the inclusion was a fracture 
mirror, Fig. 10. In the other specimen, with the 
inclusion near the centre of  the plate the crack 
had more than doubled its length in the weak 
tensile stress field (10MPa) induced by the 
tempering. 

Observations of  tempered plates with NiS in- 
clusions that had spontaneously fractured re- 
vealed [14] that fracture generally initiated from 
particles greater than 110/~m in diameter located 
in the tensile stress field near the middle of  the 
plate. Inclusions of  diameter in the range 80 to 
l l 0 p m  were sometimes responsible for spon- 
taneous fracture, whereas those inclusions of  
diameter less than 80/am were not dangerous. The 
tensile stress in these plates was in the range 50 to 
60MPa. When plate fracture did occur from in- 
clusions closer to the edge of  the plate it was 
invariably initiated from particles much larger 
than the minimum size. 

4. Discussion 
The observations, shown in Fig. 7, o f  cracks 
around transformed particles have been replotted 
in normalized units in Fig. 11. Also included in 
Fig. 11 is the curve predicted by Equations 12 and 
13 when ~ = 1.0. Almost all the points lie either 

below or on this curve. There are numerous 
possible reasons for this, including incomplete 
phase transformation, and consequent over- 
estimation o f  Po, and, as shown by Tabuchi [15], 
the often inhomogeneous nature of  these in- 
clusions, see Fig. 8. It is now possible to determine 
the minimum size of  a NiS inclusion that is capable 
of  crack initiation. The maximum value from the 
curve in Fig. 3 with r~ = 1.0 is about 0.44 . Then, 
from Equation 12, 

7rKl~ 
R ~> (0.44Po)2, (20) 

that is, R ~> 24.1#m with Kle = 7.5 X l0  s N 
m-3/2, and Po = 615 MPa. 

This value is in reasonable agreement with a 
minimum value of  32 gm for the smallest radius of  
an inclusion with an associated crack. This agree- 
ment is hardly surprising considering the some- 
what experimental manner in which r~ was deter- 
mined. By way of  comparison, Lange [16] has 
recently proposed a critical condition for crack 
extension based on the analysis of  Evans [7]. The 
critical sphere size radius, Re, below which crack 
extension does not occur is given by 

15K12e 
Ro-  e g  (21) 

*A somewhat better fit to the data in Fig. 11 is obtained with n = 0.8, in Equations 12 and 13, giving a maximum 
value of 0.4, and a critical NiS inclusion radius of 29.2gm. 
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Figure 12 A plot of critical inclusion diameter as a func- 
tion of the tempering level. 

that is, R c ~> 22.3 tzm, which is in good agreement 
with the present analysis and observations. 

The influence of the tempering or applied stress 
level on the normalized stress intensity factor has 
been given in Figs 5 and 6. From Equation 19 
it is possible to determine the minimum size of  an 
inclusion necessary to spontaneously fracture a 
glass plate of  a specific tempering or applied stress 
level. The variation of the critical inclusion diam- 
eter with normalized stress level is shown in 
Fig. 12. 

The diameter of  an inclusion, predicted to 
cause spontaneous fracture in a tempered plate 
with internal tensile stress of 50MPa, is 57/am, 
which is in good agreement with observation. The 
effect of the position of the inclusion within the 
plate on the critical size of the inclusion is shown 
in Fig. 13 when the maximum tensile stress is 
50 MPa. This curve is likely to be an overestimate 
of  the minimum inclusion dimension for thin 
plates because of the stress variation across the in- 
clusion and crack in this case. Also included in 
Fig. 13 are some observations by Ballantyne [1] 
of  the dimensions and positions of  NiS inclusions 
in tempered glass plates which had spontaneously 
shattered. These observations are in good agree- 
ment with prediction but do indicate that the 
stress gradient becomes more critical as the in- 
clusion approaches the compressive zone. 
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Figure 13 A plot of critical inclusion diameter with 
distance from the centre of the plate with a maximum 
internal tension of 50MNm -2. Data points obtained 
from [1]. Bars indicate the inclusion width. 

5. Conc lus ions  
It has been shown that fracture mechanics con- 
siderations suggest that there are two critical 
dimensions of nickel sulphide inclusions in glass. 
For annealed glass there is a critical size of  in- 
clusion above which nucleation of microcracks can 
take place. In tempered glass there is another 
critical inclusion size, which is dependent upon 
both the tempering stress and location of the 
inclusion, leading to spontaneous fracture of  the 
body. Whilst the generalized analysis was verified 
for the particular case of a NiS inclusion in glass, 
a similar analysis should be useful for any in- 
clusion which develops a positive hydrostatic 
pressure within the glass, regardless of whether 
this arises as a result of a phase change or a dif- 
ference in thermal expansion coefficient of the 
inclusion and the glass. 

Currently, there is considerable interest in the 
addition of zirconia to a number of other ceramic 
systems because of the enhanced toughening that 
may be achieved. One explanation of this toaghen- 
ing is the concept of microcracking ahead of a 
crack growing through the material [17]. This is 
possible because particles of zirconia transforming 
from the higher temperature tetragonal phase to 
the lower temperature monoclinic phase undergo 
both shear and volumetric strains. In the larger 
particles the shear strains are significantly reduced 
by twinning within the grain. Hence, a similar 
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analysis to the one outlined in this work might be 

expected to predict the minimum particle size for 

the onset of microcracking and the zone of the 

microcrack extension about particles ahead of an 

opening macroscopic crack. 
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